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Abstract We propose a method for explicit computation of the Chern character form of a
holomorphic Hermitian vector bundle (E, h) over a complex manifold X in a local holomor-
phic frame. First, we use the descent equations arising in the double complex of (p, q)-forms
on X and find the explicit degree decomposition of the Chern–Simons form csk associated to
the Chern character form chk of (E, h). Second, we introduce the so-called ascent equations
that start from the (2k − 1, 0) component of csk , and use the Cholesky decomposition of the
Hermitian metric h to represent the Chern–Simons form, modulo d-exact forms, as a ∂-exact
form. This yields a formula for the Bott–Chern form bck of type (k − 1, k − 1) such that

chk =
√−1

2π
∂̄∂bck . Explicit computation is presented for the cases k = 2 and 3.

Keywords Chern character form · Chern-Simons form · Bott-Chern form · Ascent and
descent equations · Cholesky decomposition

Mathematics Subject Classification (2000) 32L05 · 32Q

1 Introduction

Let V be aC∞-complex vector bundle with a connection∇ = d+ A over a smooth manifold
X . The Chern character form ch(V,∇) for the pair (V,∇) is defined by

ch(V,∇) = tr

{
exp

(√−1

2π
∇2

)}
.
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Here∇2 is the curvature of the connection∇, an End V -valued 2-form on X , and tr is the trace
in the endomorphism bundle End V . The Chern character form is closed, d ch(V,∇) = 0,
and its cohomology class in H∗(X,C) does not depend on the choice of ∇ (see, e.g., [1]).

Let ∇0 and ∇1 be two connections on V . In [2], Chern and Simons introduced secondary
characteristic forms—the Chern–Simons forms cs(∇1,∇0). They are defined modulo exact
forms, satisfy the equation

d cs(∇1,∇0) = ch(V,∇1) − ch(V,∇0), (1)

and enjoy a functoriality property under the pullbacks with smooth maps. When the bundle
V is flat, putting ∇1 = d + A and ∇0 = d and using a linear homotopy A(t) = t A in the
Chern–Weil homotopy formula, one obtains an explicit formula for the Chern–Simons form
cs(A) in terms of A.

Let (E, h) be a holomorphic Hermitian vector bundle—a holomorphic vector bundle of
rank r over a complex manifold X, dimC X = n, with a Hermitian metric h. The metric h
induces canonical connection d+θ in E with the curvature formΘ . In the local holomorphic
frame, θ = h−1∂h and Θ = ∂̄θ (see, e.g., [1]). Chern–Weil theory associates to every
polynomial Φ on GL(r,C), invariant under conjugation, a differential form Φ(Θ) on X . A
special case of this construction is the Chern character form ch(E, h), defined by

ch(E, h) = tr

{
exp

(√−1

2π
Θ

)}
=

n∑
k=0

chk(E, h).

Let h1 and h2 be two Hermitian metrics on a holomorphic vector bundle E over a complex
manifold X . In the classical paper [3], Bott and Chern showed the existence of certain
secondary characteristic forms, the Bott–Chern secondary forms bc(E, h1, h2). They are
defined modulo ∂ and ∂̄-exact forms, satisfy the equation

√−1

2π
∂̄∂ bc(E, h1, h2) = ch(E, h1) − ch(E, h2)

and enjoy the functoriality property with respect to the pullbacks by holomorphic maps. Here
the Chern character forms are computed for canonical connections in (E, h1) and (E, h2).
The Bott–Chern forms have been used in geometric stability [4,5], in higher dimensional
Arakelov geometry [6,7] and in physics [8] (see also [9] for their application to differential
K -theory).

However, it is difficult to obtain explicit formulas for the Bott–Chern forms. It is already
mentioned in the remark in [3, Sect. 3] that even for a linear homotopy ht of Hermitian
metrics, the homotopy formula in Proposition 3.15 in [3] contains the inverse metrics through
Θ t = ∂̄(h−1

t ∂ht ) and does not allow to integrate over t in a closed form. As the result, it is
difficult1 to get explicit formulas for the Bott–Chern forms in terms of the Hermitian metrics
h1 and h2 only. This problem manifests itself even for the case when E is a trivial bundle
with metrics h1 = h and h2 = I , the identity matrix.

Here we show how using global coordinates on the space of Hermitian positive-definite
matrices associated with the Cholesky decomposition, one can obtain explicit formulas for
the Bott–Chern forms on trivial bundles. Namely, in Proposition 1 we present an explicit
decomposition of the Chern–Simons form csk associated to the Chern character form chk =
chk(E, h) into (p, q)-degrees. It is done in Sect. 2 by solving the descent equations from the
double complex of (p, q)-forms on X , applied to chk . In Sect. 3 we introduce the so-called

1 As was observed in [4], “One interesting feature is that we have an example of a variational problem with
no simple explicit formula for the Lagrangian”.
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ascent equations to represent the Chern–Simons form, modulo d-exact forms, as a ∂-exact
form. These equations start from the (2k−1, 0) component of csk and produce theBott–Chern

form—a form bck of degree (k − 1, k − 1) such that chk =
√−1

2π
∂̄∂bck . It is obtained by

repeatedly finding corresponding ∂-antiderivatives and seems to be very non-local. Using the
Cholesky decomposition of the Hermitianmetric h we explicitly solve the ascent equations in
cases k = 2 and k = 3, and obtain explicit local formulas for the corresponding Bott–Chern
forms bck . These formulas are presented, respectively, in Propositions 2 and 3 and constitute
the main result of the paper. We believe that such explicit local formulas for the Bott–Chern
forms exist for all k. In Remark 5 we prove that the form bc2 is positive, and in Remark 7 we
directly show that for bundles with upper-triangular transition functions the Euler–Lagrange
functional MC (−, K ) introduced in [4] is bounded below.

2 Double descent

2.1 Set-up

Let h be aHermitianmetric in a rank r trivial complex vector bundle over a complexmanifold
X (i.e., in general we consider a local holomorphic frame over some open neighborhood).
Put (see, e.g., [1])

θ = h−1∂h and Θ = ∂̄θ .

We have the following useful formulas

∂θ = −θ2, ∂̄θ = Θ and ∂Θ = [Θ, θ ], ∂̄Θ = 0, (2)

where for thematrix-valued differential formswewrite AB instead of A∧B, etc. In particular,
we have

∂Θk = [Θk, θ ] and ∂(θΘk) = −θΘkθ . (3)

We have, using ı =
√−1

2π
,

chk(h) = ı k

k!ωk,k,

where

ωk,k = trΘk

is a ∂ and ∂̄-closed real form of type (k, k); here and in what follows ωp,q denotes a (p, q)-
form. It follows from the Poincaré lemma that locally (i.e., on some polydisk coordinate chart
of X ) there are forms ωk+l,k−l−1 such that

ωk,k = ∂̄ωk,k−1,

∂ωk,k−1 = ∂̄ωk+1,k−2,

...

∂ω2k−2,1 = ∂̄ω2k−1,0,

∂ω2k−1,0 = 0.
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These descent equations2 can be written succinctly as a single equation

ωk,k = (∂̄ − t∂)
(
ωk,k−1 + tωk+1,k−2 + · · · + tk−2ω2k−2,1 + tk−1ω2k−1,0

)
, (4)

which holds for all t ∈ R.

Remark 1 Putting t = −1 we get

ωk,k = d
(
ωk,k−1 − ωk+1,k−2 + · · · + (−1)k−2ω2k−2,1 + (−1)k−1ω2k−1,0

)
,

where d = ∂ + ∂̄ . This gives an explicit decomposition of the Chern–Simons secondary form
csk into (p, q)-degrees, p + q = 2k − 1:

csk = ı k

k!
(
ωk,k−1 − ωk+1,k−2 + · · · + (−1)k−2ω2k−2,1 + (−1)k−1ω2k−1,0

)
. (5)

It is easy to compute all these forms using (2)–(3) and equations

∂θ2 = 0, ∂̄θ2 = [Θ, θ ]. (6)

First, we observe that

ωk,k−1 = tr(θΘk−1)

and state the following result.

Lemma 1 We have

∂ωk,k−1 = tr(θ2Θk−1) = ∂̄ωk+1,k−2,

where

ωk+1,k−2 = 1

k + 1
tr

{
θ

(
θ2Θk−2 + Θθ2Θk−3 + · · · + Θk−3θ2Θ + Θk−2θ2

)}
.

Proof Using (2)–(3), we have

∂ tr
(
θΘk−1

)
= tr

(
−θ2Θk−1 − θ

(
Θk−1θ − θΘk−1

))
= − tr

(
θΘk−1θ

)
= tr θ2Θk−1.

Next, using (2) and (6), we get

∂̄

k−2∑
i=0

(
θΘ iθ2Θk−2−i

)
=

k−2∑
i=0

(
Θ i+1θ2Θk−2−i

)
−

k−2∑
i=0

(
θΘ i (Θθ − θΘ)Θk−2−i

)

=
k−2∑
i=0

(
Θ i+1θ2Θk−2−i

)
+ θ2Θk−1 − θΘk−1θ ,

since the second sum telescopes. Using the cyclic property of the trace, we obtain the formula
for ωk+1,k−2.

Observe that ωk,k−1 is the constant term a0 in the polynomial

Fk(t) = tr
{
θ

(
Θ + tθ2

)k−1
}

= a0 + a1t + · · · + ak−1t
k−1, (7)

2 Compare with the double descent in [10] and with the holomorphic descent in [8].

123

Author's personal copy



Geom Dedicata (2016) 181:223–237 227

while by Lemma 1,

ωk+1,k−2 = 1

k + 1
a1.

This suggests to consider all coefficients al of Fk(t)—differential forms of degrees (k+l, k−
l − 1), l = 0, 1, . . . , k − 1.

Lemma 2 Put Gk(t) = tr(Θ + tθ2)k . We have

∂̄Fk(t) − t∂Fk(t) = Gk(t).

Proof It follows from Eq. (2) and (6) that

∂(Θ + tθ2) = [
(Θ + tθ2), θ

]
and ∂̄(Θ + tθ2) = t

[
(Θ + tθ2), θ

]
,

which implies

∂(Θ + tθ2)k =
[
(Θ + tθ2)k, θ

]
and ∂̄(Θ + tθ2)k = t

[
(Θ + tθ2)k, θ

]
.

Therefore,

∂Fk(t) = tr
{
−θ2(Θ + tθ2)k−1 − θ

(
(Θ + tθ2)k−1θ − θ(Θ + tθ2)k−1

)}
= tr

{
θ2(Θ + tθ2)k−1

}
and

∂̄Fk(t) = tr
{
Θ(Θ + tθ2)k−1 − tθ

(
(Θ + tθ2)k−1θ − θ(Θ + tθ2)k−1

)}
= t tr

{
θ2(Θ + tθ2)k−1

}
+ tr(Θ + tθ2)k,

so that (∂̄ − t∂)Fk(t) = Gk(t).

From here it is easy to find all descent forms ωk+l,k−l−1.

Proposition 1 We have

csk = ı k

k!
(
ωk,k−1 − ωk+1,k−2 + · · · + (−1)k−2ω2k−2,1 + (−1)k−1ω2k−1,0

)
,

where

ωk+l,k−l−1 = k!l!
(k + l)!al , l = 0, 1, . . . , k − 1.

In particular,

ω2k−1,0 = k!(k − 1)!
(2k − 1)! tr θ

2k−1.

Proof Using the cyclic property of the trace and the computation in the proof of Lemma 2,
we obtain

dGk

dt
(t) = k tr

{
θ2(Θ + tθ2)k−1

}
= k∂Fk(t),

so that

Gk(t) = b0 + k∂a0
t

1
+ k∂a1

t2

2
+ · · · + k∂ak−1

tk

k
,
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where b0 = trΘk = ωk,k . Now it follows from Lemma 2 that

∂̄al =
(
k + l

l

)
∂al−1, l = 1, . . . , k − 1,

and since a0 = ωk,k−1, we easily obtain

al = (k + l) · · · (k + 1)

l! ωk+l,k−l−1.

Thus for k = 1 we have

ω1,0 = tr θ = ∂ log det h and ω0,0 = log det h,

whereas for k = 2

ω2,1 = tr(θΘ) and ω3,0 = 1

3
tr θ3.

For k = 3 we have

ω3,2 = tr(θΘ2), ω4,1 = 1

2
tr(θ3Θ) and ω5,0 = 1

10
tr θ5,

and for k = 4 from Proposition 1 we obtain

ω4,3 = tr(θΘ3), ω5,2 = 1

5
tr

(
θ3Θ2 + θΘθ2Θ + θΘ2θ2

)
, ω6,1 = 1

5
tr(θ5Θ)

and

ω7,0 = 1

35
tr θ7.

Remark 2 The forms tr θ2k−1, k ≥ 1, where θ = g−1dg is a Maurer–Cartan form, generate
the cohomology ring H•(GL(∞,C),Q) for the stabilized complex general linear group
GL(∞,C).

3 Double ascent

3.1 Set-up

From the descent equations it follows that there is a form ω2k−2,0 such that

ω2k−1,0 = ∂ω2k−2,0.

Now going up from the bottom to the top (this explains the terminology), we get

∂(ω2k−2,1 + ∂̄ω2k−2,0) = 0,

so that there is a form ω2k−3,1 such that

ω2k−2,1 + ∂̄ω2k−2,0 = ∂ω2k−3,1.

Therefore

∂(ω2k−3,2 + ∂̄ω2k−3,1) = 0
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and there is a form ω2k−4,2 such that

ω2k−3,2 + ∂̄ω2k−3,1 = ∂ω2k−4,2.

Repeating this procedure, we finally get a form ωk−1,k−1 such that

ωk,k−1 + ∂̄ωk,k−2 = ∂ωk−1,k−1.

The ascent equations can be written succinctly as

k!
ı k
csk = ∂ωk−1,k−1 − d

(
ωk,k−2 − ωk+1,k−3 + · · · + (−1)kω2k−2,0

)
. (8)

Defining CSk as csk modulo exact forms (see [11]), we can rewrite (8) as

CSk = ı k

k! ∂ωk−1,k−1.

Therefore,

chk = ı k

k! ∂̄∂ωk−1,k−1,

so that ωk−1,k−1 is
k!

ı k−1 times the Bott–Chern secondary form bck (see [3]).

Remark 3 As a corollary, we have the following version of local “∂∂̄ lemma”: for each form
ω of type (k, k) on a complex manifold X satisfying dω = 0 on every polydisk neighborhood
U ⊂ X , there is a form θU on U such that ω|U = ∂̄∂θU .

Solving ‘explicitly’ the ascent equationswould give explicit local expressions of the Chern
character forms chk in terms of the corresponding Bott–Chern forms bck . It is known that
it is not possible to get local formulas in terms of the matrix h alone. This is because each
step in the ascent procedure uses Poincaré lemma which, in general, contains an integration
through the homotopy formula. However, one can solve the ascent equations explicitly by
using the Cholesky decomposition!

Namely, put

h = b∗ab = cb, c = b∗a,

where thematrix b is upper-triangular with 1’s on the diagonal, and a is diagonal with positive
entries. The matrix elements ai and bi j , i = 1, . . . , r, j > i , are global coordinates on the
homogeneous spaceHr = GL(r,C)/U(r) of hermitian positive-definite r × r matrices. We
get

θ = h−1∂h = b−1∂b + b−1c−1∂c b = b−1(θ1 + θ2)b, (9)

where

θ1 = ∂b b−1 and θ2 = c−1∂c.

Introducing θ = θ1 + θ2, we obtain

Θ = ∂̄θ = b−1 (
∂̄θ − θ̄1θ − θ θ̄1

)
b, (10)

where

θ̄1 = ∂̄b b−1 and θ̄2 = c−1∂̄c.
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These matrix-valued 1-forms satisfy

∂θ1 = θ21 , ∂θ2 = −θ22 , ∂̄ θ̄1 = θ̄21 , ∂̄ θ̄2 = −θ̄22 , (11)

∂̄θ1 = −∂θ̄1 + θ1θ̄1 + θ̄1θ1, ∂̄θ2 = −∂θ̄2 − θ2θ̄2 − θ̄2θ2. (12)

Moreover, since θ1 is nilpotent (upper-triangular with zeros on the diagonal) and

θ2 = a−1θ∗
1 a + a−1∂a,

we have important property

tr
(
θ
l1
1 θ̄

l̄1
1

)
= tr

(
θ
l2
2 θ̄

l̄2
2

)
= 0 (13)

for all l1 + l̄1 > 0 and l2 or l̄2 > 1. We will also be using

θ̄ = h−1∂̄h = b−1θ̄b, (14)

where θ̄ = θ̄1 + θ̄2, so that

∂̄ θ̄ = −θ̄
2

and Θ = −∂ θ̄ − θ θ̄ − θ̄ θ . (15)

I claim that it possible to compute explicitly differential forms ω2k−2−l,l as traces of
polynomials of the matrix-valued 1-forms θ1, θ̄1, θ2, θ̄2 and their ∂ and ∂̄ differentials. In
particular, one can obtain explicit formulas for the Bott–Chern forms ωk−1,k−1 as traces of
polynomials in these variables. Though I do not have a nice general proof of this result, the
explicit computation of these forms for k = 2 and k = 3 is given below.

Remark 4 TheCholesky decomposition is useful since by the holomorphic splitting principle
(see, e.g., [12, Corollary 9.26]), for every holomorphic vector bundle E → X there exists
a variety Y and a flat morphism p : Y → X such that the bundle p∗(E) over Y admits
upper-triangular transition functions.

3.2 The case k = 2

Start with the form ω3,0 = 1
3 tr θ

3. Using (11), (13) and the Cholesky decomposition we
have

ω3,0 = 1

3
tr

(
θ31 + 3θ21 θ2 + 3θ1θ

2
2 + θ32

) = tr
(
θ21 θ2 + θ1θ

2
2

) = ∂ tr(θ1θ2),

so that

ω2,0 = tr(θ1θ2).

Using (15) we get

ω2,1 = tr(θΘ) = − tr(θ(∂ θ̄ + θ(θ θ̄ + θ̄ θ)) = ∂ tr(θ θ̄) + tr(θ2θ̄ − θ(θ θ̄ + θ̄ θ))

= ∂ tr(θ θ̄) − tr(θ2θ̄ ),

and using (12) we obtain

ω2,1 + ∂̄ω2,0 = ∂ tr(θ θ̄) + tr(−θ2θ̄ + (∂̄θ1θ2 − θ1∂̄θ2))

= ∂ tr(θ θ̄) + tr(−θ2θ̄ − ∂θ̄1θ2 + θ1∂θ̄2 + (θ1θ2 + θ2θ1)θ̄)

= ∂ tr(θ θ̄ − (θ̄1θ2 − θ̄2θ1))

+ tr(−θ2θ̄ + θ21 θ̄2 + θ̄2θ̄
2
1 + (θ1θ2 + θ2θ1)θ̄)
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= ∂ tr(θ θ̄ − (θ̄1θ2 − θ̄2θ1)).

Thus
ω1,1 = tr

(
θ θ̄ − (θ̄1θ2 − θ̄2θ1)

) = tr
(
2θ2θ̄1 + θ2θ̄2

)
, (16)

and we obtain the following result.

Proposition 2 The second Bott–Chern form bc2 of a trivial Hermitian vector bundle (Cr , h)

over a complex manifold X in Cholesky coordinates h = b∗ab is given by the formula

bc2 =
√−1

4π
tr

(
2θ2θ̄1 + θ2θ̄2

)
.

Here θ̄1 = ∂̄bb−1, θ2 = c−1∂c and θ̄2 = c−1∂̄c.

Remark 5 Using that c = b∗a, we obtain from (16) that

ω1,1 = tr
(
a−1∂a ∧ a−1∂̄a + 2ϕ ∧ ϕ∗) ,

where ϕ = a−1/2(b∗)−1∂b∗a1/2, so that
√−1ω1,1 ≥ 0.

Remark 6 When

a =
(
1 0
0 eσ

)
and b =

(
1 f̄
0 1

)
,

we get

ω0,0 = σ and ω1,1 = tr
(
∂σ ∧ ∂̄σ + 2e−σ ∂ f ∧ ∂̄ f̄

)
,

so that

1

2
∂̄∂ω1,1 − 1

2
(∂̄∂ω0,0)

2 = ∂̄∂
(
e−σ ∂ f ∧ ∂̄ f̄

)
,

in agreement with Remark 3.4 in [9].

Following Remark 4, consider a rank r Hermitian vector bundle (E, h) with the transition
functions taking values in the Borel subgroup B(r) of upper-triangular matrices in GL(r,C).
In terms of a local trivialization of E—an open cover {Uα} of X and holomorphic transition
functions gαβ : Uα ∩ Uβ → B(r), a Hermitian metric h on E is given by a collection {hα}
of positive-definite Hermitian matrices on Uα , satisfying

hβ = g∗
αβhαgαβ on Uα ∩Uβ .

Denote by bc2α the second Bott–Chern form on Uα and write gαβ = aαβbαβ , where aαβ are
diagonal and bαβ are unipotent. From Proposition 2 we obtain

bc2β = bc2α + cαβ on Uα ∩Uβ, (17)

where

cαβ =
√−1

4π
tr

{
a−1
αβ ∂aαβ ∧

(
a−1
αβ ∂aαβ

)
+ a−1

αβ ∂aαβ ∧ a−1
α ∂̄aα + a−1

α ∂aα ∧
(
a−1
αβ ∂aαβ

)}
,

and depends only on aαβ . Since aαβ are holomorphic, we have ∂̄∂cαβ = 0. In particular, if
transition functions are unipotent, it follows from (17) that local expressions {bc2α} determine
a well-defined (1, 1)-form on X .
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Remark 7 Given two Hermitian metrics h1 and h2 on a holomorphic vector bundle E , we
define a local Bott–Chern form bc2(h1, h2) by

bc2(h1, h2) = bc2(h1) − bc2(h2),

where bc2(h1,2) are given in Proposition 2 with h = h1,2. It follows from (17) that for the
bundle E with upper-triangular transition functions bc2(h1, h2) is a well-defined (1, 1)-form
on X . In particular, for such bundles Proposition 2 provides an explicit formulas for the
functionals Mω(−, K ) and MC (−, K ) in Donaldson’s paper [4], and from Remark 5 one
gets that MC (−, K ) is bounded below [4, Corollary 9]. The latter functional corresponds to
the case when X = C , and algebraic curve, an in our notations is given by

MC (h1, h2) =
∫
C
2πbc2(h1, h2) + 4π

√−1μ(E )bc1(h1, h2)ω.

Here ω is a Kähler form on C, vol(C) = 1, and h1, h2 are Hermitian metrics in the holomor-
phic vector bundle E over C with the slope μ(E ).

Remark 8 Upper triangular matrices were used to study the higher Reidemeister torsion in
[13]. Though the set-up in this paper and in [13] is different, it would be interesting to compare
the corresponding calculations.

3.3 The case k = 3

Using (13) we get

ω5,0 = 1

10
tr θ5 = 1

10
tr θ5

= 1

2
tr

(
θ41 θ2 + θ31 θ22 + θ21 θ2θ1θ2 + θ1θ2θ1θ

2
2 + θ21 θ32 + θ1θ

4
2

)
= 1

2
∂ tr

(
θ31 θ2 + θ1θ

3
2 + 1

2
(θ1θ2)

2
)

,

so that

ω4,0 = 1

2
tr

(
θ31 θ2 + θ1θ

3
2 + 1

2
(θ1θ2)

2
)

.

We will compute ω4,1 + ∂̄ω4,0 and find ω3,1 such that

ω4,1 + ∂̄ω4,0 = ∂ω3,1.

First using (15) we get

ω4,1 = 1

2
tr(θ3Θ) = −1

2
tr(θ3(∂ θ̄ + θ̄ θ + θ θ̄))

= 1

2
∂ tr(θ3θ̄) + 1

2
tr(θ4θ̄ − θ3(θ̄ θ + θ θ̄))

= 1

2
∂ tr(θ3θ̄ ) − 1

2
tr(θ4θ̄ ).

Next, using (12) we obtain

∂̄ω4,0 = 1

2
tr

(
I1∂̄θ1 + I2∂̄θ2

)
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= 1

2
tr

(
I1(−∂θ̄1 + θ1θ̄1 + θ̄1θ1) + I2(−∂θ̄2 − θ2θ̄2 − θ̄2θ2)

)
= 1

2
∂ tr

(
I1θ̄1 + I2θ̄2

) + 1

2
tr

(
(−∂ I1 + I1θ1 + θ1 I1)θ̄1 − (∂ I2 + I2θ2 + θ2 I2)θ̄2

)
,

where

I1 = θ31 + θ21 θ2 + θ2θ
2
1 − θ1θ2θ1 + θ2θ1θ2 + θ32 = θ3 − θθ2θ1 − θ1θ2θ

and

I2 = − (
θ31 + θ1θ2θ1 + θ1θ

2
2 − θ2θ1θ2 + θ22 θ1 + θ32

) = −θ3 + θθ1θ2 + θ2θ1θ.

Using identities

∂ I1 − I1θ1 − θ1 I1 = −θ4 and ∂ I2 + I2θ2 + θ2 I2 = −θ4,

we get

ω4,1 + ∂̄ω4,0 = 1

2
∂ tr

(
θ3θ̄ + I1θ̄1 + I2θ̄2

)
,

so that

ω3,1 = 1

2
tr

(
θ3θ̄ + I1θ̄1 + I2θ̄2

)
.

Equivalently,

ω3,1 = 1

2
tr

(
2θ3θ̄1 − (θ1θ

2
2 + 2θ1θ2θ1 + θ22 θ1)θ̄1 + (θ21 θ2 + 2θ2θ1θ2 + θ2θ

2
1 )θ̄2

)
.

Finally, we will compute ω3,2 + ∂̄ω3,1 and find ω2,2 such that

ω3,2 + ∂̄ω3,1 = ∂ω2,2.

First, using (15) we obtain

∂ tr(θΘθ̄) = tr
(
−θ2Θθ̄ − θ(Θθ − θΘ)θ̄ + θΘ(Θ + θ θ̄ + θ̄ θ)

)
= tr

(
θΘ2 + θ2Θθ̄

)
,

and

∂ tr(θ̄Θθ) = tr
(
−(Θ + θ θ̄ + θ̄ θ)Θθ − θ̄(Θθ − θΘ)θ + θ̄Θθ2

)
= − tr

(
θΘ2 + θ̄Θθ2

)
,

so that

ω3,2 = tr(θΘ2) = ∂

{
1

2
tr(θΘθ̄ − θ̄Θθ)

}
− 1

2
tr(θ2Θθ̄ + θ̄Θθ2).

Next, we write

ω3,1 = 1

2
tr

(
θ3θ̄ + I1θ̄1 + I2θ̄2

)
= ω

(1)
3,1 + ω

(2)
3,1,

where θ̄1 = b−1θ̄1b and θ̄2 = b−1θ̄2b and

I1 = θ3 − θθ2θ1 − θ1θ2θ, I2 = −θ3 + θθ1θ2 + θ2θ1θ ,
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where θ1 = b−1θ1b and θ2 = b−1θ2b. We have

∂̄ω
(1)
3,1 = 1

2
∂̄ tr(θ3θ̄)

= 1

2
tr(Θθ2θ̄ − θΘθθ̄ + θ2Θθ̄ + θ3θ̄

2
)

= 1

2
tr(θ̄Θθ2 + θ2Θθ̄ − θΘθθ̄ + θ3θ̄

2
),

so that

ω3,2 + ∂̄ω
(1)
3,1 = ∂

{
1

2
tr(θΘθ̄ − θ̄Θθ)

}
+ 1

2
tr(θ3θ̄

2 − θ θ̄θΘ).

We also have

∂ tr(θ θ̄)2 = 2 tr
(
(−θ2θ̄ − θ∂ θ̄)θ θ̄

)
= 2 tr

(
(−θ2θ̄ + θΘ + θθ θ̄ + θ θ̄θ)θ θ̄

)
= 2 tr

(
θΘθθ̄ + θ θ̄θθ θ̄

)
,

so that

tr(θ θ̄θΘ) = ∂

{
1

2
tr(θ θ̄)2

}
− tr

(
θ2θ̄ θ θ̄

)
.

Thus we obtain

ω3,2 + ∂̄ω
(1)
3,1 = ∂

{
1

2
tr

(
θΘθ̄ − θ̄Θθ − 1

2
(θ θ̄)2

)}
+ 1

2
tr

(
θ3θ̄

2 + θ2θ̄ θ θ̄
)

.

Note that this formula is written in terms of the matrix h only. Using Cholesky decompo-
sition, we have

ω3,2 + ∂̄ω
(1)
3,1 = ∂

{
1

2
tr

(
θΘθ̄ − θ̄Θθ − 1

2
(θ θ̄)2

)}
+ 1

2
tr

(
θ3θ̄2 + θ2θ̄ θ θ̄

)
and it remains to compute

∂̄ω
(2)
3,1 = 1

2
∂̄ tr

(
I1θ̄1 + I2θ̄2

)
= 1

2
∂̄ tr

(
I1θ̄1 + I2θ̄2

)
= 1

2
tr

(
∂̄ I1θ̄1 + ∂̄ I2θ̄2 − I1θ̄

2
1 + I2θ̄

2
2

)
.

By a straightforward computation using

∂̄θ = −∂θ̄ + θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2

we get

∂̄ I1θ̄1 = tr
{[

∂̄θθ2 − θ∂̄θθ + θ2∂̄θ − ∂̄θθ2θ1 + θ(∂̄θ2θ1 − θ2∂̄θ1)

− (∂̄θ1θ2 − θ1∂̄θ2)θ − θ1θ2∂̄θ
]
θ̄1

}
= tr

{[
− ∂θ̄θ2 + θ∂θ̄θ − θ2∂θ̄ + ∂θ̄θ2θ1 + θ(θ2∂θ̄1 − ∂θ̄2θ1)

+ (∂θ̄1θ2 − θ1∂θ̄2)θ + θ1θ2∂θ̄
]
θ̄1

}
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+ tr
{[

(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ
2 − θ(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ

+ θ2(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2) − (θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ2θ1

− θ((θ2θ̄2 + θ̄2θ2)θ1 + θ2(θ1θ̄1 + θ̄1θ1)) − ((θ1θ̄1 + θ̄1θ1)θ2 + θ1(θ2θ̄2 + θ̄2θ2))θ

− θ1θ2(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)
]
θ̄1

}
and

∂̄ I2θ̄2 = tr
{[

− ∂̄θθ2 + θ∂̄θθ − θ2∂̄θ + ∂̄θθ1θ2 − θ(∂̄θ1θ2 − θ1∂̄θ2)

+ (∂̄θ2θ1 − θ2∂̄θ1)θ + θ2θ1∂̄θ
]
θ̄2

}
= tr

{[
∂θ̄θ2 − θ∂θ̄θ + θ2∂θ̄ − ∂θ̄θ1θ2 − θ(θ1∂θ̄2 − ∂θ̄1θ2)

− (∂θ̄2θ1 − θ2∂θ̄1)θ − θ2θ1∂θ̄
]
θ̄2

}
+ tr

{[
− (θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ

2 + θ(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ

− θ2(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2) + (θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ1θ2

− θ(θ1(θ2θ̄2 + θ̄2θ2) + (θ1θ̄1 + θ̄1θ1)θ2) − (θ2(θ1θ̄1 + θ̄1θ1) + (θ2θ̄2 + θ̄2θ2)θ1)θ

+ θ2θ1(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)
]
θ̄2

}
.

Thus we obtain

tr(∂̄ I1θ̄1 + ∂̄ I2θ̄2) = J1 + J2,

where

J1 = tr
{

− ∂θ̄2(θ
2
1 + θ22 + θ1θ2)θ̄1 + (θ21 + θ22 + θ1θ2)∂θ1θ̄2 − (θ21 + θ22 + θ2θ1)∂θ̄2θ̄1

+ ∂θ̄1(θ
2
1 + θ22 + θ2θ1)θ̄2 + ∂θ̄1(θ2θ1 − θ1θ2)θ̄1 − (θ2θ1 − θ1θ2)∂θ̄1θ̄1

+ ∂θ̄2(θ2θ1 − θ1θ2)θ̄2 − (θ2θ1 − θ1θ2)∂θ̄2θ̄2 + θ2∂θ̄1θ2θ̄1 + θ2∂θ̄2θ2θ̄1

− θ1∂θ̄1θ1θ̄2 − θ1∂θ̄2θ1θ̄2 + θ1∂θ̄1θ2θ̄1 + θ2∂θ̄1θ1θ̄1

− θ1∂θ̄2θ2θ̄2 − θ2∂θ̄2θ1θ̄2 − θ1∂θ̄2θ1θ̄1 + θ2∂θ̄1θ2θ̄2

}
and

J2 = tr
{ [

(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ
2 − θ(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ

+ θ2(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)
]
(θ̄1 − θ̄2) − (θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)(θ2θ1θ̄1

− θ1θ2θ̄2) − θ1θ2(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ̄1 + θ2θ1(θ1θ̄1 + θ̄1θ1 − θ2θ̄2 − θ̄2θ2)θ̄2

− θ((θ2θ̄2 + θ̄2θ2)θ1 + θ2(θ1θ̄1 + θ̄1θ1))θ̄1 − θ(θ1(θ2θ̄2 + θ̄2θ2) + (θ1θ̄1 + θ̄1θ1)θ2)θ̄2

− (θ1(θ2θ̄2+θ̄2θ2)+(θ1θ̄1+θ̄1θ1)θ2)θ θ̄1−((θ2θ̄2 + θ̄2θ2)θ1 + θ2(θ1θ̄1 + θ̄1θ1)θ θ̄2

}
.

Simplifying and using the cyclic property of the trace, we get

J1 = tr
{
(θ21 + θ22 + θ1θ2)∂(θ̄1θ̄2) − (θ21 + θ22 + θ2θ1)∂(θ̄2θ̄1) − (θ2θ1 − θ1θ2)∂(θ̄21 + θ̄22 )

+ (θ2∂θ̄1θ2θ̄2 + θ2θ̄1θ2∂θ̄2) − (θ1∂θ̄1θ1θ̄2 + θ1θ̄1θ1∂θ̄2) + (θ2∂θ̄1θ1θ̄1 + θ2θ̄1θ1∂θ̄1)

− (θ2∂θ̄2θ1θ̄2 + θ2θ̄2θ1∂θ̄2) + θ2∂θ̄1θ2θ̄1 − θ1∂θ̄2θ1θ̄2

}
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= ∂
{
tr

(
(θ21 + θ22 + θ1θ2)θ̄1θ̄2 − (θ21 + θ22 + θ2θ1)θ̄2θ̄1 − (θ2θ1 − θ1θ2)(θ̄

2
1 + θ̄22 )

− θ2θ̄1θ2θ̄2 + θ1θ̄1θ1θ̄2 − θ2θ̄1θ1θ̄1 + θ2θ̄2θ1θ̄2 + 1
2 ((θ1θ̄2)

2 − (θ2θ̄1)
2)

)}
+ tr

{−(θ21 θ2 + θ1θ
2
2 )θ̄1θ̄2 − (θ22 θ1 + θ2θ

2
1 )θ̄2θ̄1 − (θ21 θ2 + θ1θ

2
2 + θ22 θ1

+ θ2θ
2
1 )(θ̄21 + θ̄22 ) − θ22 θ̄1θ2θ̄2 − θ22 θ̄2θ2θ̄1 − θ21 θ̄1θ1θ̄2 − θ21 θ̄2θ1θ̄1

− θ22 θ̄1θ1θ̄1+θ21 θ̄1θ2θ̄1+θ22 θ̄2θ1θ̄2−θ21 θ̄2θ2θ̄2 − θ21 θ̄2θ1θ̄2 − θ22 θ̄1θ2θ̄1
} = J11 + J12,

where

J11 = ∂
{
tr

(
(θ21 + θ22 + θ1θ2)θ̄1θ̄2 − (θ21 + θ22 + θ2θ1)θ̄2θ̄1 − (θ2θ1 − θ1θ2)(θ̄

2
1 + θ̄22 )

− θ2θ̄1θ2θ̄2 + θ1θ̄1θ1θ̄2 − θ2θ̄1θ1θ̄1 + θ2θ̄2θ1θ̄2 + 1
2 ((θ1θ̄2)

2 − (θ2θ̄1)
2)

)}

and

J12 = tr
{−(θ21 θ2+θ1θ

2
2 )θ̄1θ̄2−(θ22 θ1+θ2θ

2
1 )θ̄2θ̄1−(θ21 θ2 + θ1θ

2
2 + θ22 θ1 + θ2θ

2
1 )(θ̄21 + θ̄22 )

− θ22 θ̄1θ2θ̄2 − θ22 θ̄2θ2θ̄1 − θ21 θ̄1θ1θ̄2 − θ21 θ̄2θ1θ̄1 − θ22 θ̄1θ1θ̄1 + θ21 θ̄1θ2θ̄1

+ θ22 θ̄2θ1θ̄2 − θ21 θ̄2θ2θ̄2 − θ21 θ̄2θ1θ̄2 − θ22 θ̄1θ2θ̄1
}
,

and

J2 = tr
{(

θ2(θ̄1 − θ̄2)(θ1θ̄1 − θ2θ̄2) + θ1θ
2(θ̄1 − θ̄2)θ̄1 − θ2θ

2(θ̄1 − θ̄2)θ̄2

− θ(θ1θ̄1 − θ2θ̄2)θ(θ̄1 − θ̄2) − θ1θ(θ̄1 − θ̄2)θ θ̄1 + θ2θ(θ̄1 − θ̄2)θ θ̄2

+ θ2(θ1θ̄1 − θ2θ̄2)(θ̄1 − θ̄2) + θ2(θ̄1θ1 − θ̄2θ2)(θ̄1 − θ̄2) − θ2θ1θ̄1θ1θ̄1

− θ1θ2θ1θ̄
2
1 + θ2θ1θ̄1θ2θ̄2 + θ2θ2θ1θ̄1θ̄2 + θ1θ2θ̄2θ1θ̄1 + θ21 θ2θ̄2θ̄1

− θ1θ2θ̄2θ2θ̄2 − θ2θ1θ2θ̄
2
2 − θ1θ2(θ1θ̄1 − θ2θ̄2)θ̄1 − θ1θ2(θ̄1θ1 − θ̄2θ2)θ̄1

+ θ2θ1(θ1θ̄1 − θ2θ̄2)θ̄2 + θ2θ1(θ̄1θ1 − θ̄2θ2)θ̄2 − θθ2θ̄ θ1θ̄1 − 2θ2θ1θ̄1θ θ̄2

− θθ2θ1θ̄
2
1 − θθ1θ̄ θ2θ̄2 − θθ1θ2θ̄

2
2 − 2θ1θ2θ̄2θ θ̄1 − θ2θ θ̄1θ1θ̄2 − θ2θ θ̄1θ1θ̄1

− θ1θ2θ θ̄21 −θ1θ θ̄2θ2θ̄2 − θ2θ1θ θ̄22 − θ1θ θ̄2θ2θ̄1
}
.

Simplifying J12 + J2 once again and after using numerous ‘miraculous cancellations’, we
obtain

J12 + J2 + tr
(−I1θ̄

2
1 + I2θ̄

2
2

) = − tr
(
θ3θ̄2 + θ2θ̄ θ θ̄

)
,

so that finally

ω3,2 + ∂̄ω3,1 = ∂

{
1

2
tr
(
θΘθ̄ − θ̄Θθ − 1

2
(θ θ̄)2 + (θ21 + θ22 + θ1θ2)θ̄1θ̄2

− (θ21 + θ22 + θ2θ1)θ̄2θ̄1 − (θ2θ1 − θ1θ2)(θ̄
2
1 + θ̄22 ) − θ2θ̄1θ2θ̄2

+ θ1θ̄1θ1θ̄2 − θ2θ̄1θ1θ̄1 + θ2θ̄2θ1θ̄2 + 1

2

(
(θ1θ̄2)

2 − (θ2θ̄1)
2))}

.

Thus we obtain the following result.

123

Author's personal copy



Geom Dedicata (2016) 181:223–237 237

Proposition 3 The third Bott–Chern form bc3 of a trivial Hermitian vector bundle (Cr , h)

over a complex manifold X in Cholesky coordinates h = b∗ab is given by the formula

bc3 = − 1

48π2 tr

(
θΘθ̄ − θ̄Θθ − 1

2
(θ θ̄)2 + (θ21 + θ22 + θ1θ2)θ̄1θ̄2

− (θ21 + θ22 + θ2θ1)θ̄2θ̄1 − (θ2θ1 − θ1θ2)(θ̄
2
1 + θ̄22 ) − θ2θ̄1θ2θ̄2

+ θ1θ̄1θ1θ̄2 − θ2θ̄1θ1θ̄1 + θ2θ̄2θ1θ̄2 + 1

2

(
(θ1θ̄2)

2 − (θ2θ̄1)
2)) .
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